Hardware overview for shared micro-mobility (2/3): IoT & GPS devices, connectivity

Hardware overview for shared micro-mobility (2/3): IoT & GPS devices, connectivity

At ATOM Mobility, we know there is a lot to consider when starting a mobility company. To help make the process easier, we’ve put together a breakdown of some most frequently recommended manufacturers of IoT, GPS and connectivity on the market that are currently integrated with ATOM Mobility. Contact us in case you need a guidance or more information.

 

 

To remotely control and monitor kick scooter, e-bike, moped, car or any other vehicle you will need to install so called IoT device which allows to remotely send commands to the vehicle and execute them, as well as monitor real-time location and track possible errors. What IoT & GPS devices are the in the market?

 

Teltonika

Teltonika is used by the largest shared mobility operators in the world. The company has sold more than 10 million IoT devices during their 10+ years on the market and has more than 500 employees. IoT devices by Teltonika can be used for kick scooters, scooters/mopeds, e-bikes, cars, trucks and even forklifts. The list of supported vehicles is very long. Some examples:

EMB100

Teltonika EMB100 is an e-bike IoT with GNSS, GSM and Bluetooth connectivity. Integrated ECU data reading will expand your capabilities even more.

E-Scooter Tracker

Teltonika E-SCOOTER TRACKERPLUS is a small, professional and waterproof tracker for a variety of electric scooters. The device has internal high gain GNSS/GSM antennas, Bluetooth and high capacity internal Li-ion battery and 10-97 V power supply range for integration variety.

 

TST100 by Teltonika

 

TST100 by Teltonika

TST100

Teltonika TST100 is a kick e-scooter tracking device with integrated GNSS, GSM and Bluetooth connectivity, designed for sharing applications. TST100 enables the possibility to read information from kick e-scooters ECU and control them remotely.

FMB130

FMB130 is tracker with internal GNSS, GSM antennas, configurable digital/analogue inputs/negative input/impulse inputs, three DOUT outputs, Bluetooth connectivity and backup battery.

Suitable for: kick scooters, scooters, mopeds (both gasoline and electric), e-bikes, cars, trucks and more.

Price: 60 USD - 120 USD / 50 € - 120 € depending on model and quantity. No monthly fees.

 

Omni

Company based in China and provides IoT devices mostly for kick scooters and bikes. It is widely used by vehicle manufacturers that use Omni IoT as a default built in option (like Segway, Acton and many others).

Suitable for: kick scooters, bikes and e-bikes.

Price: 45 USD- 85 USD / 40 € - 80 € per piece depending on model and quantity. In some cases manufacturers that use Omni IoT by default may charge some monthly fee for connectivity.

 

Comodule

Comodule is rapidly growing startup headquartered in Tallinn (Estonia), with business development offices in Berlin (Germany) and Taipei (Taiwan). They worked with many large companies including Jump and Bolt. Comodule provides both IoT device and cloud server with API. This is why they have additional monthly fees.

Suitable for: kick scooters and e-bikes.

Price: 80 USD - 150 USD / 80 € - 130 € depending on quantity + monthly fees.

 

Lightbug

We decided to add to the list also Lighbug device that is actually not an IoT device (not connected to the vehicle), but can be used in some cases just to monitor real-time location and trigger alarm sound if needed. Lightbug’s remote GPS solutions can be used in cases if you do not want to integrate to the vehicle. Model has battery that lasts 30-60 days if send location data every minute and up to 10-15 years if update regularity is lower. Great result! You can attach GPS basically everywhere, not only on a vehicle.

 

Lightbug Pro is industrial grade tracker, designed to have a battery life of up to 15 years

 

Lightbug Pro is industrial grade tracker, designed to have a battery life of up to 15 years

Suitable for: real-time location tracking of any asset or person

Price: 95 USD - 115 USD / 89.90 € - 104.00 €

  

Connectivity and data

Each IOT device will require a SIM card that has data capability in order to send and receive commands. While some manufacturers offer IoT devices together with SIM cards and data, other give you more flexibility to choose from. Data usage varies depending on IoT device you use and configurations, but in general every SIM card will consume around 5-30 MB/month. Local SIM card providers can offer you a price estimation which should be around 0,5 - 2 EUR/month per SIM card. Some global connectivity providers that focus on shared mobility market:

 

Twilio

Straightforward pay-as-you-go pricing in 180+ countries. In average around 2 USD/month per SIM card + data.

 

1ot

1oT has great coverage all over the world and flexible pricing without monthly fees (you pay only for data usage).

 

1nce

The 1NCE IoT Flat Rate is an all-inclusive price model for IoT connectivity. It is a pre-paid offering to connect IoT devices for up to 10 years at a price of 10 EUR, including all necessary features such as data allowance, SIM card cost, APN, OpenVPN and SMS (250 sms). For 10 EUR you will get sim card with 500 MB (most probably will be enough for 1,5 - 2 years). If you are ready to pay upfront 10 EUR/sim this is the best offer available.

 

Truphone

Truphone is another great alternative to take a look at. For 12 EUR per SIM you will get 250 MB to use within 3 years.

 

 

This is the second part of hardware overview. In next blog post we will cover list of popular smart locks. Contact ATOM Mobility for any additional questions or inquiries you may have about available products and suppliers. 

ATOM Mobility - We empower entrepreneurs to launch vehicle sharing platforms.

Interested in launching your own mobility platform?

Click below to learn more or request a demo.

Related posts

More case studies

View allView all case studies
Blog
Top 10 ATOM Mobility features released in 2025 - and how they help companies build more profitable operations
Top 10 ATOM Mobility features released in 2025 - and how they help companies build more profitable operations

🚀📱2025 was all about automating more and reducing friction across mobility. ATOM Mobility introduced OpenAPI, new sign-in flows, a rental web-booker, smarter fleet automation, and a wide range of new hardware and payment integrations. A faster, more flexible, more scalable mobility platform - built for operators who want to grow.

Read post

2025 has been a defining year for shared mobility, digital rentals, and ride-hailing. Competition is stronger, operational costs are rising, and users expect instant, reliable digital experiences. Operators who succeed are the ones who automate more, reduce friction, and stay flexible with hardware, payments, and integrations.

This year, ATOM Mobility shipped a series of features designed to help operators achieve exactly that:
grow revenue, reduce costs, improve fleet quality, and scale into new markets with less complexity.

Here are the 10 most impactful (out of more than 70) features ATOM Mobility released in 2025, and why they matter.

1. OpenAPI (supported by all 3 modules - vehicle sharing, digital rental and ride-hail)

The launch of ATOM’s OpenAPI marks a major step forward for operators seeking greater flexibility, automation, and integration possibilities.

What it is
A fully documented API layer allowing operators and partners to build custom flows, integrations, booking systems, analytics dashboards, or MaaS connections on top of ATOM Mobility.

Who it helps
All verticals: micromobility, car-sharing, moped sharing, rentals, ride-hail, and enterprise partners.

How it works
OpenAPI enables third-party developers to build on top of the ATOM Mobility infrastructure, allowing seamless integrations with external apps, internal tools, and automated workflows. With OpenAPI, operators can extend their service in almost any direction: a partner app (like FreeNow or Uber) can show your vehicles, unlock them, and process payments on your behalf; or internal systems can trigger automated actions - such as sending a survey email after every completed ride. The possibilities are nearly unlimited, giving operators full flexibility to innovate and scale however they choose.

Why it matters
- Enables deeper integrations with partners and local platforms
- Supports custom business logic and automations
- Makes it easier to enter new markets with local-specific requirements
- Opens the door to MaaS distribution and enterprise collaborations

2. Sign-In with Apple & Google - A smoother first-time user experience (all modules)

Across mobility, the registration flow is often the first point of friction. ATOM Mobility introduced modern authentication options to simplify onboarding.

What it is
One-tap sign-in using Apple ID or Google Account instead of relying solely on SMS verification.

Who it helps
All operators - especially those targeting tourists, or markets with unreliable SMS delivery.

How it works
When creating a new account or logging in, users can choose to log in/register using Apple ID or Google Account - this will allow account creation in just 2 taps.

Why it matters
- Faster user onboarding experience -> happier rider -> more frequent rides
- Fewer SMS-related issues (and lower SMS related costs) and failed verifications
- Reduced support load from login problems

3. Multipurpose side menu button (all modules)

What it is
A customizable slot in the app menu where operators can add up to five external links - websites, ecommerce pages, tour pages, extra FAQ pages, social media, partner offers, etc.

How it works
- Enable in Settings → System preferences → External links
- Add titles + URLs
- Links automaticaly appear in the app under “More”

Value for operators
- A space where you can display any information you consider important for the user
- Supports cross-promotion and partnership campaigns
- Allows communication updates without app releases
- Creates additional monetisation opportunities, such as launching your own e-commerce or merchandise shop

4. Pre-ride questionnaire (all modules)

What it is
A form that users must complete before starting a ride - ideal for compliance, reporting, invoicing, or gathering important data.

Who it helps
Operators needing regulatory data, reporting, consent collection, or structured user feedback.

How it works
Create a question (or several) in “Customer form” -> Group questions into a pre-ride form -> Assign a form to specific vehicle models/classes.
Once completed, the customer must answer predefined questions before starting the ride. Their responses appear in both customer and ride exports. For example, you can ask for a personal ID code, legal address, or any other required information.

Value for operators
- Helps meet regulatory or municipal requirements
- Ensures correct invoicing details
- Provides a structured way to capture essential user data

5. Driver revenue auto-distribution (Stripe & Adyen, ride-hail)

What it is
Automatic payout splitting: driver earnings go to the driver’s payout account, and platform commission goes to the operator - all processed automatically after each ride.

Who it helps
Ride-hail operators using Stripe or Adyen.

How it works
- Operator has a Stripe/Adyen merchant account
- Drivers onboard as payout recipients
- After completed rides, payouts split automatically
- Supports mixed payment methods (cash and non-cash)

Value for operators
- Reduces manual payout work
- Minimises accounting errors
- Improves driver experience through transparency and instant pay out
- Makes scaling easier when the driver base grow

6. Set a manual vehicle location (vehicle sharing & digital rental)

What it is
A tool to override or manually set a vehicle’s GPS position when IoT data is unavailable (no IoT placed on the vehicle at all) or inaccurate.

Who it helps
Operators with underground parking, poor GPS coverage, or long-term rentals without IoT can use this setup. A typical scenario is long-term bike rental without IoT: the user completes ID verification, payment, and booking in the app, then sees the vehicle assigned to a predefined location (station) where it is picked up and later returned. This serves as a workaround for vehicles that do not support IoT or where adding IoT device is too costly.

How it works
Edit vehicle → update “Location” field. The system assumes this as the correct coordinate. Works for individual vehicles or via mass import.

Value for operators
- Avoids user frustration when vehicles appear in the wrong location
- Supports business modesl with fleets operating without IoT devices

7. Offer your price - rider-controlled pricing (ride-hailing)

What it is
A flexible pricing feature that lets passengers propose their own fare - higher or lower than the system-calculated price, within limits set by the operator. Drivers see the offer instantly and can choose to accept or reject it.

Who it helps
Ride-hailing operators in competitive, price-sensitive, or highly dynamic markets where price shifts demand quickly.

How it works
When requesting a ride, the user selects “Offer your price”. A slider or +/– buttons allow them to adjust the fare within operator-defined boundaries. If the user lowers the price, the app explains that the offer may reduce the chance of driver acceptance.
Drivers see a clear banner showing whether the rider is offering more or less than the standard fare. Drivers can accept or decline based on their preference.
Operators can enable or disable the feature per vehicle class.

Why it matters
- Creates a clear differentiator in markets dominated by fixed-fare competitors
- Helps convert riders who compare multiple apps before booking
- Gives drivers more control over their earnings and decisions, improving transparency and satisfaction
- Supports better ride matching during off-peak hours or less profitable routes
- Allows operators to experiment with more flexible pricing strategies without changing their core fare model


8. Web-booker for digital rental - frictionless bookings directly from your website (digital rental)

What it is
A lightweight, embeddable booking widget that lets customers reserve a rental vehicle directly from your website - without installing the mobile app first. It’s designed to capture spontaneous bookings, convert website visitors, and unify online and in-app rental experiences.

Who it helps
Car, moped, and bike rental operators, as well as hospitality and tourism partners such as hotels, resorts, coworking spaces, real-estate developers, and travel service providers.

How it works
Every operator receives a branded rental URL: merchantname.atommobility.com/rent
Users select their area, vehicle type, and rental period directly in the widget. Once confirmed and the account created, the booking syncs automatically into the ATOM Mobility dashboard. Customers see a confirmation screen with a QR code to open the booking in the mobile app. Payment, ID verification, and vehicle unlock actions are completed in the ATOM Mobility-powered app before the trip begins.
The widget automatically adapts to the operator’s brand color for a visually seamless integration. In the dashboard, each booking displays its source: App, Web, or Booker - helping operators track where rentals originate.

Why it matters
- Converts first-time users browsing your website into paying customers - without forcing an app install
- Enables plug-and-play rental flows for partners such as hotels, rental desks, cafés, coworking spaces, or tourist spots
- Supports QR-based rental journeys from physical locations
- Reduces friction for users who want a fast, simple booking experience
- Helps operators expand distribution with minimal effort, unlocking new sales channels
- Unifies online and mobile rental flows under a single backend and operational system

Demo: https://app.atommobility.com/rental-widget

9. Vehicle status change automation (vehicle sharing & digital rental)

What it is
Bad user experiences often happen when several riders encounter the same faulty vehicle. ATOM Mobility now prevents this automatically. Automation rules detect problematic vehicles and instantly set them to “Needs investigation,” hiding them from the user app so the operator can inspect the vehicle before the next rider can take it.

Who it helps
Sharing and rental operators managing medium or large fleets.

How it works
System monitors low ratings, repeated short rides, and user reports. When triggered, it:
- creates a maintenance task
- switches vehicle status
- hides the vehicle from users

Why it matters
- Prevents recurring complaints from the same issue
- Reduces refunds and reputational damage
- Helps maintain a healthier, more reliable fleet
- Automates routine operational checks

10. New integrations (10) - a broader ecosystem for hardware, payments & compliance (all modules)

What was added
2025 brought a wave of new integrations that give operators more flexibility in choosing hardware, payments, charging, and regulatory tools. What was added:
- Ridemovi IoT
- Wave payment gateway
- Linka smart lock support
- 2Hire IoT
- Kuhmute charging stations
- Eskiz.uz OTP service
- Atmos payment gateway
- Chiron API (regulatory)
- Fitrider charging station
- Azericard payment gateway

Why it matters
- Easier entry into markets with local payment or OTP requirements
- More hardware options for scooters, bikes, e-bikes, and cars
- Better compatibility with charging infrastructure
- Reduced integration time when expanding
- Support for regulatory compliance where required

These ten features represent only a small selection of what we delivered this year. In total, our team shipped more than 70 new features, dozens of integrations, and countless small improvements that quietly make the platform faster, more stable, and more enjoyable for operators and end-users every single day. Behind each release is a team focused on one idea: helping entrepreneurs build stronger, more efficient, and more profitable mobility businesses.

And we’re just getting started.
Our 2026 tech pipeline is already packed with ambitious and exciting solutions - from deeper AI-powered automation to smarter fleet intelligence and new tools that will change how operators run mobility services. We're looking forward to pushing the industry even further together.

Blog
From phone tap to smooth ride: the tech stack behind modern shared mobility
From phone tap to smooth ride: the tech stack behind modern shared mobility

🛴📡 That smooth ride you just took? It was powered by a whole ecosystem of hardware and software you never saw. From IoT modules in the vehicle to real-time dashboards and rider apps, shared mobility relies on a solid tech stack to stay online, secure, and profitable.

Read post

You open an app, spot a scooter on the map, and within seconds it unlocks with a click. You ride off, expecting the battery to be charged, the brakes to work, and the whole process to feel effortless. From the very first ride, shared mobility set the standard: vehicles should always be nearby, ready to go, and the whole experience should feel seamless. What most riders never think about, though, is the complex mix of hardware and software working in the background to make every smooth ride possible.

Why the tech matters

Technology is the baseline for the shared mobility business model. Every ride depends on it. Vehicles need IoT hardware to lock, unlock, and report their status. Connectivity has to be stable so operators always know where assets are and what condition they’re in.

On the software side, riders expect apps that feel instant and intuitive, while operators rely on dashboards for fleet health, pricing, and support. Add in the realities of theft, battery swaps, downtime, and local regulations, and the stakes become clear. Without a reliable tech stack, even small failures – a scooter that won’t unlock or a payment that stalls – can quickly break user trust and hurt the business.

Where it began

Over the years, several manufacturers have entered the shared mobility IoT space, offering different hardware configurations, network technologies, and integrations. Companies like Teltonika (Lithuania), Comodule (Estonia), Invers (Germany), OMNI (China) and others produce modules compatible with various vehicle types and connectivity standards. Each provider focuses on specific strengths – some prioritize energy efficiency or compact design, others emphasize global coverage or advanced diagnostics. Choosing between them depends on the type of vehicles, operational scale, and software ecosystem an operator plans to use.

Our partner, Comodule was already developing IoT for micromobility when the Corona pandemic hit. Overnight, cities shifted and everyone needed their own safe, private way to move around. Shared scooters and bikes suddenly went from being a niche service to an essential part of urban transport, and the demand for IoT skyrocketed. For IoT manufacturers, it meant long days in development and manufacturing, pushing hard to deliver reliable devices at scale for brands like Uber, Lime, and Hive.

That sharp rise in demand forced them to grow quickly and gave valuable experience in building technology that could perform under real pressure. Fleets that trusted Comodule devices had a backbone they could rely on: vehicles that could be located, unlocked, secured, and managed internationally. Just as important, the IoT had to integrate seamlessly with software systems (like ATOM Mobility). That’s why building robust API and SDK tools became critical – enabling operators to connect hardware to their platforms, control fleets in real time, and access the information needed to keep moving.

Comodule factory

IoT as the brain of the vehicle

Inside every connected scooter or bike sits a IoT module, the “brain” that links the vehicle to the cloud. It connects through cellular networks, constantly sending data about location, speed, and battery status. When a rider taps “unlock” in the app, that command travels through the cloud to the module, which triggers the electronic lock and wakes up the vehicle. The same connection allows operators to set geofenced no-parking zones, push over-the-air updates, or activate a sound alarm if the scooter is being tampered with. Battery sensors inside the module report charging cycles and health, so operators know exactly when a pack needs to be swapped or replaced.

All of this data is streamed in real time to the fleet management system, giving providers the ability to monitor hundreds or even thousands of vehicles simultaneously. For operators, these capabilities mean higher uptime, faster theft recovery, and precise control over the entire fleet – the difference between running a struggling operation and a profitable one.

Rising expectations in the market

As shared mobility matured, the bar kept getting higher. New scooter generations came with swappable batteries, sturdier frames, and better onboard electronics. Riders got used to apps that respond instantly, process payments in seconds, and show vehicle availability with pinpoint accuracy.

At the same time, competition rose, not only from global players but also from smaller, local operators launching fleets in their own cities. For these companies, reliable hardware was no longer enough. They needed the software layer that connects everything: smooth rider apps, powerful operator dashboards, and analytics to make smarter decisions. Yet many lacked the time and resources to build software on their own.

Software as the missing piece

As fleets grew and competition intensified, operators realized they did not have time or funds to develop their own software layer. They needed a market-ready platform that ties everything together – apps that riders enjoy using and dashboards that give operators full control of their business. That’s where solutions like ATOM Mobility come in.

Platform connects directly with Comodule IoT through APIs and SDKs, so every unlock command, error code, or battery update flows instantly between the rider’s app and the operator’s dashboard. Almost any company can launch a fleet with this stack – from large-scale operators to small, local newcomers.

The power of integration

When hardware and software work seamlessly, the rider experience feels effortless. A simple tap in the app sends a command through the cloud to IoT, which unlocks the vehicle and streams live data back in milliseconds. The operator instantly sees the vehicle’s status in the dashboard: battery level, GPS position, and any error codes.

If the scooter leaves a geofenced area, the system reacts automatically. If maintenance is needed, the alert is flagged before it becomes a breakdown. By combining the hardware with software, fleet providers get one complete ecosystem – a stack built to keep vehicles online and users satisfied.

From seamless rides to smarter cities

From a rider’s perspective, shared mobility should always “just work.” That won’t change. But the technology stack behind it is becoming more sophisticated every year. Stricter regulations demand safer and more transparent services, while cities are pushing for integration into broader Mobility-as-a-Service platforms. IoT and software together provide the data and control that operators need, not only to stay compliant but also to improve fleet efficiency and sustainability and to provide insights for city planning.

For users, that sophistication will translate into something simple: services that are more reliable, safer for everyone on the road, and smarter – with data from real-world usage helping to shape better vehicles, better infrastructure, and better cities in the future.

*This article was created together with our partner Comodule.

Launch your mobility platform in 20 days!

Multi-vehicle. Scalable. Proven.